Winston
Lorenzo von Matterhorn
- Joined
- Jan 31, 2009
- Messages
- 9,559
- Reaction score
- 1,732
"Hello computer, get back with us when they've actually made some of this. Also, please work on transparent aluminum."
Ultra-light aluminum: Chemists report breakthrough in material design
https://phys.org/news/2017-09-ultra-light-aluminum-chemists-breakthrough-material.html
If you drop an aluminum spoon in a sink full of water, the spoon will sink to the bottom. That's because aluminum, in its conventional form, is denser than water says Utah State University chemist Alexander Boldyrev.
But if you restructure the common household metal at the molecular level, as Boldyrev and colleagues did using computational modeling, you could produce an ultra-light crystalline form of aluminum that's lighter than water.
"My colleagues' approach to this challenge was very innovative," says Boldyrev, professor in USU's Department of Chemistry and Biochemistry. "They started with a known crystal lattice, in this case, a diamond, and substituted every carbon atom with an aluminum tetrahedron."
The team's calculations confirmed such a structure is a new, metastable, lightweight form of crystal aluminum. And to their amazement, it has a density of only 0.61 gram per cubic centimeter, in contrast to convention aluminum's density of 2.7 grams per cubic centimeter.
"That means the new crystallized form will float on water, which has a density of one gram per cubic centimeter," Boldyrev says.
Ultra-light aluminum: Chemists report breakthrough in material design
https://phys.org/news/2017-09-ultra-light-aluminum-chemists-breakthrough-material.html
If you drop an aluminum spoon in a sink full of water, the spoon will sink to the bottom. That's because aluminum, in its conventional form, is denser than water says Utah State University chemist Alexander Boldyrev.
But if you restructure the common household metal at the molecular level, as Boldyrev and colleagues did using computational modeling, you could produce an ultra-light crystalline form of aluminum that's lighter than water.
"My colleagues' approach to this challenge was very innovative," says Boldyrev, professor in USU's Department of Chemistry and Biochemistry. "They started with a known crystal lattice, in this case, a diamond, and substituted every carbon atom with an aluminum tetrahedron."
The team's calculations confirmed such a structure is a new, metastable, lightweight form of crystal aluminum. And to their amazement, it has a density of only 0.61 gram per cubic centimeter, in contrast to convention aluminum's density of 2.7 grams per cubic centimeter.
"That means the new crystallized form will float on water, which has a density of one gram per cubic centimeter," Boldyrev says.