Short fat rockets

Discussion in 'The Watering Hole' started by cwbullet, Feb 15, 2020.

Help Support The Rocketry Forum by donating:

  1. Feb 17, 2020 #61

    cwbullet

    cwbullet

    cwbullet

    Obsessed with Rocketry Staff Member Administrator TRF Lifetime Supporter Global Mod

    Joined:
    Jan 24, 2009
    Messages:
    23,645
    Likes Received:
    2,390
    Gender:
    Male
    Location:
    Glennville, GA
    Thanks. I will work on the portapotty next week.
     
  2. Feb 17, 2020 #62

    kuririn

    kuririn

    kuririn

    BARGeezer TRF Supporter

    Joined:
    Oct 3, 2016
    Messages:
    3,594
    Likes Received:
    1,174
    Gender:
    Male
    Location:
    Hawaii
    1:1 upscale with "portonaut"?
     
  3. Feb 17, 2020 #63

    cwbullet

    cwbullet

    cwbullet

    Obsessed with Rocketry Staff Member Administrator TRF Lifetime Supporter Global Mod

    Joined:
    Jan 24, 2009
    Messages:
    23,645
    Likes Received:
    2,390
    Gender:
    Male
    Location:
    Glennville, GA
    Hmm maybe or 2 to 1 with a 29mm mount
     
    Speaknoevil likes this.
  4. Feb 18, 2020 #64

    SDramstad

    SDramstad

    SDramstad

    Well-Known Member

    Joined:
    Jun 26, 2014
    Messages:
    418
    Likes Received:
    194
    One more.


    mailbox1.jpg

    mailbox2.jpg
     
    K'Tesh, Jozef and BABAR like this.
  5. Feb 18, 2020 #65

    cwbullet

    cwbullet

    cwbullet

    Obsessed with Rocketry Staff Member Administrator TRF Lifetime Supporter Global Mod

    Joined:
    Jan 24, 2009
    Messages:
    23,645
    Likes Received:
    2,390
    Gender:
    Male
    Location:
    Glennville, GA
  6. Feb 18, 2020 #66

    SDramstad

    SDramstad

    SDramstad

    Well-Known Member

    Joined:
    Jun 26, 2014
    Messages:
    418
    Likes Received:
    194
    Fiberglass on top of balsa. Took awhile to get the curved top right without breaking the balsa. Then used rear ejection.

    mailbox 3.jpg
     
    dhbarr likes this.
  7. Feb 18, 2020 #67

    cwbullet

    cwbullet

    cwbullet

    Obsessed with Rocketry Staff Member Administrator TRF Lifetime Supporter Global Mod

    Joined:
    Jan 24, 2009
    Messages:
    23,645
    Likes Received:
    2,390
    Gender:
    Male
    Location:
    Glennville, GA
    Pretty sweet!
     
  8. Feb 18, 2020 #68

    ghostfather

    ghostfather

    ghostfather

    Forum Supporter TRF Supporter

    Joined:
    Mar 28, 2018
    Messages:
    78
    Likes Received:
    34
    27355842497_2449549295_o.jpg

    There was a lot of weight in the nose to get it stable
     
    o1d_dude and JamesS like this.
  9. Feb 18, 2020 #69

    Brian Ditmer

    Brian Ditmer

    Brian Ditmer

    Member

    Joined:
    Nov 20, 2019
    Messages:
    18
    Likes Received:
    6
    Gender:
    Male
  10. Feb 18, 2020 #70

    cwbullet

    cwbullet

    cwbullet

    Obsessed with Rocketry Staff Member Administrator TRF Lifetime Supporter Global Mod

    Joined:
    Jan 24, 2009
    Messages:
    23,645
    Likes Received:
    2,390
    Gender:
    Male
    Location:
    Glennville, GA
    Is that not the key to short fat rockets?
     
  11. Feb 18, 2020 #71

    ghostfather

    ghostfather

    ghostfather

    Forum Supporter TRF Supporter

    Joined:
    Mar 28, 2018
    Messages:
    78
    Likes Received:
    34
    Yep, but I thought 750g (more than a pound and a half) of lead/epoxy was a bit much
     
  12. Feb 19, 2020 #72

    cwbullet

    cwbullet

    cwbullet

    Obsessed with Rocketry Staff Member Administrator TRF Lifetime Supporter Global Mod

    Joined:
    Jan 24, 2009
    Messages:
    23,645
    Likes Received:
    2,390
    Gender:
    Male
    Location:
    Glennville, GA
  13. Feb 19, 2020 #73

    kuririn

    kuririn

    kuririn

    BARGeezer TRF Supporter

    Joined:
    Oct 3, 2016
    Messages:
    3,594
    Likes Received:
    1,174
    Gender:
    Male
    Location:
    Hawaii
    From my build pile
    0219200951[1].jpg
     
  14. Feb 19, 2020 #74

    BABAR

    BABAR

    BABAR

    Builds Rockets for NASA TRF Lifetime Supporter TRF Supporter

    Joined:
    Aug 27, 2011
    Messages:
    5,186
    Likes Received:
    813
  15. Feb 20, 2020 #75

    ThirstyBarbarian

    ThirstyBarbarian

    ThirstyBarbarian

    Well-Known Member

    Joined:
    Feb 11, 2013
    Messages:
    8,080
    Likes Received:
    527
    If there’s a coyote strapped to the outside, then you probably need a lot! But many short, fat rockets don’t need much nose weight, if any.

    The algorithms used by most sim programs don’t give a good idea of the real stability of the rocket. They don’t account for “base drag” or other stabilizing forces. You can use the zero-mass cone trick to get a better idea of the stability of a short, fat rocket. My rockets often show a seriously low stability margin of .3 cal or sometimes even less, but when you do the cone trick, it increases quite a lot. I’ve never added any weight to my Warlock, foam rocket, or other shorties, and they fly great.
     
    Steve Shannon likes this.
  16. Feb 20, 2020 #76

    BABAR

    BABAR

    BABAR

    Builds Rockets for NASA TRF Lifetime Supporter TRF Supporter

    Joined:
    Aug 27, 2011
    Messages:
    5,186
    Likes Received:
    813
    FarSideOn.PNG
    FarSideOn.PNG
    Wait a minute!... McCal
     
  17. Feb 20, 2020 #77

    cwbullet

    cwbullet

    cwbullet

    Obsessed with Rocketry Staff Member Administrator TRF Lifetime Supporter Global Mod

    Joined:
    Jan 24, 2009
    Messages:
    23,645
    Likes Received:
    2,390
    Gender:
    Male
    Location:
    Glennville, GA
    It depends on the length. the shorter the fins and tube, the more weight is needed.
     
  18. Feb 20, 2020 #78

    ThirstyBarbarian

    ThirstyBarbarian

    ThirstyBarbarian

    Well-Known Member

    Joined:
    Feb 11, 2013
    Messages:
    8,080
    Likes Received:
    527
    I got a PM with a question about the zero-mass cone trick I mentioned earlier, so I thought I could expand on it here.

    Sim programs like Open Rocket and Rocksim calculate rocket stability by calculating the center of pressure and comparing that to the center of gravity. The general rule of thumb is that the center of gravity should be about one body diameter (1.0 calibers) forward of the center of pressure. If the stability margin is less than one caliber, usually the recommendation is that you add some nose weight to increase the margin to about 1.0.

    That’s a guideline that is pretty good for rockets that are not short and fat. But the shorter and fatter the rocket, the harder it is to achieve a one caliber stability margin. A single caliber is a larger percentage of the length of a short rocket. And because of the short length, any added mass in the nose doesn’t have as much lever arm to move the the center of gravity as far as it does in longer rocket. The more mass you add up front, the more massive a motor you need in back, and you get into a vicious cycle. If a rocket is short enough, it become impossible to get 1 caliber of stability. Think of a saucer — it’s entire length might not even be one caliber.

    But we know saucers and spools fly fine. And we know from experience that short, fat rockets like the Warlock fly fine with no nose weight, even though they have stability margins of far less than 1 caliber. These kinds of rockets are a half step between longer rockets and saucer-type rockets, and there are forces that keep them stable that aren’t part of the CG/CP relationship as it’s calculated by our sim programs. Sometimes that force is referred to as “base drag”, and the idea is that the fat base of the rocket helps to stabilize it in flight.

    There is a trick you can use to kind of get the sim programs to give a little credit for base drag when calculating the center of pressure on a fat rocket and can move the CP back a bit, increasing the calculated stability margin. To do the trick, you add a cone with zero mass to the base of the rocket. In OpenRocket, I’ve done this trick by adding a transition component to the base of the rocket. The forward end at the base of the rocket has zero diameter, the length of the transition is pi times the rocket diameter, the aft end of the transition is the same size as the rocket diameter, and the mass of the transition is zero. After you add the cone to the simulation, check the stability margin with the motors you want to use, and it should be a lot closer to 1.

    This trick is mostly to reassure yourself that the rocket will be stable. Maybe the rocket will still need a bit of nose weight, but this trick can help you avoid adding way more than you need. After you’ve done the trick and feel confident in the rocket’s stability, you need to remove the cone from the design sim for your flight sims. If you leave it there, your flight sims will be off. The cone will make your altitudes and optimal delays sim too short.

    If you still feel a bit wary about the stability of your short fat rocket, you can minimize the chance of problems by easing into the motors you use. Don’t pick a motor that weighs a lot and has a long burn. Get something small with a lot of thrust, but a very short burn, and low total impulse. Small size keeps the weight aft to a minimum for better stability. High thrust gets the rocket off the rail at high speed for better stability. And if there is a stability problem, a short burn means less skywriting under thrust. If the flight goes well, start working up in motor size and burn time.

    Here’s some more info about simulating base drag:
    https://www.apogeerockets.com/education/downloads/Newsletter154.pdf
    https://www.apogeerockets.com/education/downloads/Newsletter158.pdf
    https://www.apogeerockets.com/education/downloads/Newsletter162.pdf
     
    Speaknoevil, dhbarr, o1d_dude and 2 others like this.
  19. Feb 20, 2020 #79

    MikeyDSlagle

    MikeyDSlagle

    MikeyDSlagle

    Well-Known Member

    Joined:
    Dec 17, 2013
    Messages:
    2,156
    Likes Received:
    202
    Another school of thought that is generally accepted and also debatable:
    The standard of 1 CAL stability is derived from "normal" rockets in the neighborhood of a 1:10 diameter:length ratio. Meaning a 4" rocket that is 40" long will need 4", or 1 CAL stability. Shrink the rocket down to 20" and it will only need .5 CAL to be reliably stable. Stretch it out to 80" and and now you need 2 CAL.
    The longer a rocket is relative to it's diameter the more CAL of stability it needs.
    Like many things, it's a rule of thumb.

    I regularly fly short stubbies well below 1 CAL as well, many below .5.
     
  20. Feb 21, 2020 #80

    ThirstyBarbarian

    ThirstyBarbarian

    ThirstyBarbarian

    Well-Known Member

    Joined:
    Feb 11, 2013
    Messages:
    8,080
    Likes Received:
    527
    Right. Instead of taking the difference between the CP and CG, and dividing by the diameter to get calibers, you can divide the difference by the length of the rocket. The rule of thumb in that case is that the CG should be ahead of the CP by about 10% of the body length.

    Like you said, these ratios are rules of thumb. They can often be fudged a bit if you do it for a reason that makes sense. When you do fudge it a bit, you can test the design with a small, fast, short-burn motor. And use the longest rail available.
     
    o1d_dude likes this.
  21. Feb 23, 2020 #81

    Arsenal78

    Arsenal78

    Arsenal78

    Well-Known Member

    Joined:
    May 8, 2018
    Messages:
    439
    Likes Received:
    82

Share This Page

Group Builder