Not for rocketry, but still cool electronics

The Rocketry Forum

Help Support The Rocketry Forum:

Winston

Lorenzo von Matterhorn
Joined
Jan 31, 2009
Messages
8,097
Reaction score
678
Inside The Worlds Largest Semiconductor Factory (TSMC)

 

Winston

Lorenzo von Matterhorn
Joined
Jan 31, 2009
Messages
8,097
Reaction score
678
The Whirlwind computer was an incredibly important computer for advancing computer science, the tech for which was later used in the huge SAGE system:

The Story of Whirlwind Computer Operator Joe Thompson


IBM Sage Computer Ad, 1960


The Futuristic Cold War Era SAGE Air Defense Bunkers Looked Right Out Of A Kubrick Film
The sci-fi-esque bunkers were scattered across North America and sat ready to fend off nuclear-armed Russian bombers.
MARCH 14, 2019








Great book:

From Whirlwind to MITRE: The R&D Story of The SAGE Air Defense Computer


 

Winston

Lorenzo von Matterhorn
Joined
Jan 31, 2009
Messages
8,097
Reaction score
678
MAY 11, 2020
Scientists create new recipe for single-atom transistors


Once unimaginable, transistors consisting only of several-atom clusters or even single atoms promise to become the building blocks of a new generation of computers with unparalleled memory and processing power. But to realize the full potential of these tiny transistors—miniature electrical on-off switches—researchers must find a way to make many copies of these notoriously difficult-to-fabricate components.

Now, researchers at the National Institute of Standards and Technology (NIST) and their colleagues at the University of Maryland have developed a step-by-step recipe to produce the atomic-scale devices. Using these instructions, the NIST-led team has become only the second in the world to construct a single-atom transistor and the first to fabricate a series of single electron transistors with atom-scale control over the devices' geometry.

The scientists demonstrated that they could precisely adjust the rate at which individual electrons flow through a physical gap or electrical barrier in their transistor—even though classical physics would forbid the electrons from doing so because they lack enough energy. That strictly quantum phenomenon, known as quantum tunneling, only becomes important when gaps are extremely tiny, such as in the miniature transistors. Precise control over quantum tunneling is key because it enables the transistors to become "entangled" or interlinked in a way only possible through quantum mechanics and opens new possibilities for creating quantum bits (qubits) that could be used in quantum computing.
 

Winston

Lorenzo von Matterhorn
Joined
Jan 31, 2009
Messages
8,097
Reaction score
678
Yeah, baby!

Taiwan Based TSMC To Build 5nm Fab In Arizona, Set To Come Online In 2024
May 15, 2020


In a big shift to their manufacturing operations – and a big political win domestically – TSMC has announced that the company will be building a new, high-end fab in Arizona. The facility, set to come online in 2024, will utilize TSMC’s soon-to-be-deployed 5nm process, with the ability to handle 20,000 wafers a month. And with a final price tag on the facility expected to be $12 billion, this would make it one of the most expensive fabs ever built in the United States.

Operating over a dozen fabs across the globe, TSMC is responsible for a significant share of global logic chip production, particularly with leading-edge and near-leading-edge processes. The company has become perhaps the biggest winner amidst the gradual winnowing of fabs over the past two decades, as manufacturer after manufacturer has dropped out, consolidating orders among the remaining fabs. And with GlobalFoundries dropping out of the race for cutting-edge manufacturing nodes, TSMC is one of only three companies globally that's developing leading-edge process nodes – and one of the only two that’s a pure-play foundry.

This success has become both a boon and a liability for TSMC. Along with Korean rival Samsung, the two companies have seen massive growth in revenues and profits as they have become the last fabs standing. As a result, TSMC serves customers both locally and globally, particularly the United States and China, the two of which are not enjoying the best of relations right now. This leaves TSMC trapped in the middle of matters – both figuratively and literally – as China needs TSMC to produce leading-edge chips, and the United States is now increasingly reliant on TSMC as well following GlobalFoundries’ retreat.

As a result, the Taiwan Semiconductor Manufacturing Company is going to do something it’s never done before, building a near-leading-edge fab in the US, outside of its home base of Taiwan. The new facility, set to be constructed in Arizona, will use the company’s 5nm process, which is currently TSMC’s most advanced manufacturing process. And while this will no longer be the case by the time it comes online in 2024, when 3nm processes are likely to be available, it would still make the Arizona facility among the most advanced fabs in the world, and by far the most advanced contract fab in the United States.

The Arizona facility would be joining TSMC’s other US fab, which is located in Camas, Washington. It, like TSMC’s other non-Taiwanese-fabs, is based around older technologies, with the Camas fab in particular focusing on building flash products using relatively large process nodes (350nm to 160nm). As a result, the Arizona fab represents a significant shift for TSMC; it’s not the first US fab for the company, but it’s the first time TSMC has built such an advanced fab in another nation.

All told, the Arizona fab is set to be a medium-sized facility – a “megafab” in TSMC parlance – despite its use of an advanced manufacturing node. The 20,000 wafers per month throughput of the fab is well below TSMC’s largest “gigafabs” in Taiwan, which can move more than 100,000 wafers per month. As a result while the fab will add to TSMC’s 5nm capacity, it won’t become a massive part of that capacity. Though with an expected price tag of $12 billion, it will still be a very expensive facility to build.

According to TSMC, the primary impetus for building the fab – and especially to build it in the United States instead of Taiwan – is specifically to have high-end production capacity within the United States. With GlobalFoundries dropping out of the race for leading-edge nodes, the US government and other sensitive fabless chip designers are in want of another leading-edge facility within the US to build their chips. Given their location, TSMC’s Taiwanese fabs are seen as security risk, and the US would prefer to be self-reliant rather than relying on a foreign partner – a concern that’s been magnified by the current coronavirus pandemic and the supply chain issues that has created.
 

Winston

Lorenzo von Matterhorn
Joined
Jan 31, 2009
Messages
8,097
Reaction score
678
Lasers Write Data Into Glass
Microsoft’s Project Silica is one of several efforts underway to make it practical to store huge amounts of data in glass
29 May 2020


Magnetic tape and hard disk drives hold much of the world’s archival data. Compared with other memory and storage technologies, tape and disk drives cost less and are more reliable. They’re also nonvolatile, meaning they don’t require a constant power supply to preserve data. Cultural institutions, financial firms, government agencies, and film companies have relied on these technologies for decades, and will continue to do so far into the future.

But archivists may soon have another option—using an extremely fast laser to write data into a 2-millimeter-thick piece of glass, roughly the size of a Post-it note, where that information can remain essentially forever.

This experimental form of optical data storage was demonstrated in 2013 by researchers at the University of Southampton in England. Soon after, that group began working with engineers at Microsoft Research in an effort called Project Silica. Last November, Microsoft completed its first proof of concept by writing the 1978 film Superman on a single small piece of glass and retrieving it.

With this method, researchers could theoretically store up to 360 terabytes of data on a disc the size of a DVD. For comparison, Panasonic aims to someday fit 1 TB on conventional optical discs, while Seagate and Western Digital are shooting for 50- to 60-TB hard disk drives by 2026.


2020:



2001:

 
Top