# Optimal modular architectures for universal linear optics

@article{Kumar2020OptimalMA, title={Optimal modular architectures for universal linear optics}, author={S. Praveen Kumar and Ish Dhand}, journal={arXiv: Quantum Physics}, year={2020} }

We present modular and optimal architectures for implementing arbitrary discrete unitary transformations on light. These architectures are based on systematically combining smaller M-mode linear optical interferometers together to implement a larger N-mode transformation. Thus this work enables the implementation of large linear optical transformations using smaller modules that act on the spatial or the internal degrees of freedom of light such as polarization, time or orbital angular momentum… Expand

#### 2 Citations

Fourier Transform of the Orbital Angular Momentum of a Single Photon

- Physics
- 2020

Optical networks implementing single-qudit quantum computation gates may exhibit superior properties to those for qubits as each of the optical elements in the network can work in parallel on many… Expand

Efficient construction of matrix-product representations of many-body Gaussian states

- Physics
- Physical Review A
- 2021

We present a procedure to construct tensor-network representations of many-body Gaussian states efficiently and with a controllable error. These states include the ground and thermal states of… Expand

#### References

SHOWING 1-10 OF 34 REFERENCES

Hybrid spatiotemporal architectures for universal linear optics

- Physics, Mathematics
- 2018

We present two hybrid linear-optical architectures that simultaneously exploit spatial and temporal degrees of freedom of light to effect arbitrary discrete unitary transformations. Our architectures… Expand

An Optimal Design for Universal Multiport Interferometers

- Physics
- 2016

Universal multiport interferometers, which can be programmed to implement any linear transformation between multiple channels, are emerging as a powerful tool for both classical and quantum… Expand

Linear multiport photonic interferometers: loss analysis of temporally-encoded architectures

- Computer Science, Physics
- 2018

It is concluded that implementing a chain of reconfigurable beamsplitters and delay loops on an integrated lithum niobate platform could outperform comparable architectures in the near future. Expand

Scalable boson sampling with time-bin encoding using a loop-based architecture.

- Computer Science, Medicine
- Physical review letters
- 2014

An architecture for arbitrarily scalable boson sampling using two nested fiber loops using time-bin encoding, whereby the incident photons form a pulse train, which enters the loops. Expand

Simple factorization of unitary transformations

- Physics
- 2018

We demonstrate a method for general linear optical networks that allows one to factorize any $\mathrm{SU}(n$) matrix in terms of two $\mathrm{SU}(n\ensuremath{-}1)$ blocks coupled by an SU(2)… Expand

Photonic quantum information processing: a review.

- Physics, Medicine
- Reports on progress in physics. Physical Society
- 2019

The goal of this manuscript is to provide the reader with a comprehensive review of the state of the art in this active field with a due balance between theoretical, experimental and technological results. Expand

Large-scale quantum photonic circuits in silicon

- Physics
- 2016

Abstract Quantum information science offers inherently more powerful methods for communication, computation, and precision measurement that take advantage of quantum superposition and entanglement.… Expand

Experimental realization of any discrete unitary operator.

- Physics, Medicine
- Physical review letters
- 1994

An algorithmic proof that any discrete finite-dimensional unitary operator can be constructed in the laboratory using optical devices is given, and optical experiments with any type of radiation exploring higher-dimensional discrete quantum systems become feasible. Expand

The computational complexity of linear optics

- Computer Science, Physics
- STOC '11
- 2011

A model of computation in which identical photons are generated, sent through a linear-optical network, then nonadaptively measured to count the number of photons in each mode is defined, giving new evidence that quantum computers cannot be efficiently simulated by classical computers. Expand

Universal SU(2) gadget for polarization optics

- Physics
- 1989

We present a design of a universal gadget, consisting of two half-wave plates and two quarter-wave plates coaxially mounted, which can realize every SU (2) polarization optical transformation; to… Expand